Gregos

Da Thinkfn
Revisão das 14h20min de 2 de abril de 2008 por Incognitus (discussão | contribs)

(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Editar.png
Artigo em edição
Este artigo está em processo de edição. Se puder, ajude a editá-lo.

Em Finanças, os Gregos são as variáveis que representam a sensibilidade de Derivados (tais como opções) a variações do subjacente. Cada "Grego" mede um aspecto diferente do risco de uma opção, e corresponde a um parâmetro do qual depende o valor de um instrumento financeiro ou conjunto de instrumentos financeiros. O nome "Grego" é usado porque estes parâmetros são geralmente representados nas equações usando letras gregas.

Uso

Os Gregos são ferramentas essenciais na gestão de risco. Cada Grego (com a excepção do theta= representa uma medida específica de risco de uma opção ou portfolio de opções, e pode ser ajustado ("Hedged") de forma a se obter a exposição desejada. Ver por exemplo Delta hedging.

Uma propriedade desejável de um modelo de avaliação de derivados é assim que ele permita o cálculo fácil dos Gregos. Os Gregos no Modelo Black-Scholes são bastante fáceis de calcular, e essa é uma das razões da popularidade desse modelo no mercado.

The Greeks

  • The delta measures the sensitivity to changes in the price of the underlying asset. The \Delta of an instrument is the mathematical derivative of the option value V with respect to the underlyer's price, \Delta = \frac{\partial V}{\partial S}.
  • The gamma measures the rate of change in the delta. The \Gamma is the second derivative of the value function with respect to the underlying price, \Gamma = \frac{\partial^2 V}{\partial S^2}. Gamma is important because it indicates how a portfolio will react to relatively large shifts in price.
  • The vega, which is not a Greek letter (\nu, nu is used instead), measures sensitivity to volatility. The vega is the derivative of the option value with respect to the volatility of the underlying, \nu=\frac{\partial V}{\partial \sigma}. The term kappa, \kappa, is sometimes used instead of vega, some math finance training materials sometimes mistakenly use the term tau, \tau.
  • The speed measures third order sensitivity to price. The speed is the third derivative of the value function with respect to the underlying price, \frac{\partial^3 V}{\partial S^3}.


  • The theta measures sensitivity to the passage of time (see Option time value). \Theta is the negative of the derivative of the option value with respect to the amount of time to expiry of the option, \Theta = -\frac{\partial V}{\partial T}.
  • The rho measures sensitivity to the applicable interest rate. The \rho is the derivative of the option value with respect to the risk free rate, \rho = \frac{\partial V}{\partial r}.
  • Less commonly used:
    • The lambda \lambda is the percentage change in option value per change in the underlying price, or \lambda = \frac{\partial V}{\partial S}\times\frac{1}{V}. It is the logarithmic derivative.
    • The vega gamma or volga measures second order sensitivity to implied volatility. This is the second derivative of the option value with respect to the volatility of the underlying, \frac{\partial^2 V}{\partial \sigma^2}.
    • The vanna measures cross-sensitivity of the option value with respect to change in the underlying price and the volatility, \frac{\partial^2 V}{\partial S \partial \sigma}, which can also be interpreted as the sensitivity of delta to a unit change in volatility.
    • The delta decay, or charm, measures the time decay of delta, \frac{\partial \Delta}{\partial T} = \frac{\partial^2 V}{\partial S \partial T}. This can be important when hedging a position over a weekend.
    • The color measures the sensitivity of the charm, or delta decay to the underlying asset price, \frac{\partial^3 V}{\partial S^2 \partial T}. It is the third derivative of the option value, twice to underlying asset price and once to time.

Black-Scholes

The Greeks under the Black-Scholes model are calculated as follows, where \phi (phi) is the standard normal probability density function and \Phi is the standard normal cumulative distribution function. Note that the gamma and vega formulas are the same for calls and puts.

For a given: Stock Price  S \, , Strike Price  K \, , Risk-Free Rate  r \, , Annual Dividend Yield  q \, , Time to Maturity,  \tau = T-t \, , and Volatility  \sigma \, ...

Calls Puts
price  e^{-q \tau} S\Phi(d_1) - e^{-r \tau} K\Phi(d_2) \,  e^{-r \tau} K\Phi(-d_2) - e^{-q \tau} S\Phi(-d_1)  \,
delta  e^{-q \tau} \Phi(d_1) \,  -e^{-q \tau} \Phi(-d_1) \,
gamma  e^{-q \tau} \frac{\phi(d_1)}{S\sigma\sqrt{\tau}} \,
vega  Se^{-q \tau} \phi(d_1) \sqrt{\tau} \,
theta  -e^{-q \tau} \frac{S \phi(d_1) \sigma}{2 \sqrt{\tau}} - rKe^{-r \tau}\Phi(d_2) + qSe^{-q \tau}\Phi(d_1) \,  -e^{-q \tau} \frac{S \phi(d_1) \sigma}{2 \sqrt{\tau}} + rKe^{-r \tau}\Phi(-d_2) - qSe^{-q \tau}\Phi(-d_1) \,
rho  K \tau e^{-r \tau}\Phi(d_2)\,  -K \tau e^{-r \tau}\Phi(-d_2) \,
volga  Se^{-q \tau} \phi(d_1) \sqrt{\tau} \frac{d_1 d_2}{\sigma} = \nu  \frac{d_1 d_2}{\sigma} \,
vanna  -e^{-q \tau} \phi(d_1) \frac{d_2}{\sigma} \, = \frac{\nu}{S}\left[1 - \frac{d_1}{\sigma\sqrt{\tau}} \right]\,
charm  -qe^{-q \tau} \Phi(d_1) + e^{-q \tau} \phi(d_1) \frac{2(r-q) \tau - d_2 \sigma \sqrt{\tau}}{2\tau \sigma \sqrt{\tau}} \,  qe^{-q \tau} \Phi(-d_1) + e^{-q \tau} \phi(d_1) \frac{2(r-q) \tau - d_2 \sigma \sqrt{\tau}}{2\tau \sigma \sqrt{\tau}} \,
color  -e^{-q \tau} \frac{\phi(d_1)}{2S\tau \sigma \sqrt{\tau}} \left[2q\tau + 1 + \frac{2(r-q) \tau - d_2 \sigma \sqrt{\tau}}{\sigma \sqrt{\tau}}d_1 \right] \,
dual delta  -e^{-r \tau} \Phi(d_2) \,  e^{-r \tau} \Phi(-d_2) \,
dual gamma  e^{-r \tau} \frac{\phi(d_2)}{K\sigma\sqrt{\tau}} \,

where

 d_1 = \frac{\ln(S/K) + (r - q + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}
 d_2 = \frac{\ln(S/K) + (r - q - \sigma^2/2)\tau}{\sigma\sqrt{\tau}} = d_1 - \sigma\sqrt{\tau}
 \phi(x) = \frac{e^{- \frac{x^2}{2}}}{\sqrt{2 \pi}}
 \Phi(x) = \int_{-\infty}^x \frac{e^{- \frac{y^2}{2}}}{\sqrt{2 \pi}} \,dy = \int_{-x}^{\infty} \frac{e^{- \frac{y^2}{2}}}{\sqrt{2 \pi}} \,dy

See also

External links

Discussions
Calculations